Marietta City Schools

2023-2024 District Unit Planner

Grade 6 Mathematics							
Unit title	Unit 3: Investigating Rate, Ratio and Proportional Reasoning	MYP year	1	Unit duration (hrs)	20 hours		

Mastering Content and Skills through INQUIRY (Establishing the purpose of the Unit): What will students learn?

GA DoE Standards

Standards

6.NR.4: Solve a variety of contextual problems involving ratios, unit rates, equivalent ratios, percentages, and conversions within measurement systems using proportional reasoning.
6.MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective
collaboration and expression. Seek help and apply feedback. Set and monitor goals.

Concepts/Skills to be Mastered by Students

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)		
6.NR.4.1	Explain the concept of a ratio, represent ratios, and use ratio language to describe a relationship between two quantities.	Strategies and Methods - Students should be able to solve problems involving ratios found in everyday situations. - Students should be given the opportunity to represent and explain the concept of a ratio and the relationship between two quantities using concrete materials, drawings, tape diagrams (bar models), double number line diagrams, equations, and standard fractional notation.	Fundamentals - Students should be able to explain the concept of a ratio, such as using part-to-part or part-to-whole. - Students should be able to fluently use ratio language to describe a ratio relationship between two quantities. - Students should be able to identify standard fractional notation to compare.	Example - The ratio of wings to beaks in the bird house at the zoo was $2: 1$, because for every 2 wings there was 1 beak. - For every vote candidate A received, candidate C received nearly three votes.
6.NR.4.2	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	Strategies and Methods - Students should be able to solve problems involving ratios found in realistic situations.		
6.NR.4.3	Solve problems involving proportions using a variety of student-selected strategies.	Strategies and Methods - Students should be given opportunities to utilize student-selected strategies to solve applicable, mathematical problems involving proportions. - Students should be given the opportunity to use concrete materials, drawings, tables of equivalent ratios, tape diagrams (bar models), double number line diagrams, and equations when solving problems. - Students can choose a strategy from a variety of strategies developed to solve a specific problem depending on the situation presented in the problem.		

6.NR.4.4	Describe the concept of rates and unit rate in the context of a ratio relationship.	Strategies and Methods - Students should create a table of values displaying the ratio relationships to graph ordered pairs of distances and times. - Students should write equations to represent	Fundamentals - When asked practical, mathematical questions, students should demonstrate an understanding of	Terminology - Students should understand a unit rate as a relationship of a : b where $b=1$ ($\frac{a}{b}$ associated	Examples - We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per one hamburger? - In a problem involving motion at a constant speed, list and graph

		the relationship between distance and time where the unit rate is the simple multiplicative relationship. - Students should be able to determine the independent and dependent relationship of rate relationships within authentic, mathematical situations.	simple multiplicative relationships involving unit rates.	with a ratio a: b with $\mathrm{b} \neq 0$ (b not equal to zero), and use rate language).	ordered pairs of distances and times, and write an equation such as $\mathrm{d}=65 \mathrm{t}$ to represent the relationship between distance and time. In this example, 65 is the unit rate or simple multiplicative relationship.
6.NR.4.5	Solve unit rate problems including those involving unit pricing and constant speed.	Example - If it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?			
6.NR.4.6	Calculate a percent of a quantity as a rate per 100 and solve everyday problems given a percent.	Strategies and Methods - Students should be able to calculate the percentage of a number using proportional reasoning developed through working with ratios and rates. - Students should be able to solve contextual problems involving finding the whole given a part and the part given the whole. - Students should determine what percent one number is of another number to solve authentic, mathematical problems.		Fundamentals - Students should have opportunities to explore the concept of percentage and recognize the connection between fractions, decimal numbers, and percentages, such as, 25% of a quantity means $\frac{25}{100}$ or .25 times the quantity. - Students should be able to convert fractions with denominators of $2,4,5$ and 10 to the decimal notation.	
6.NR.4.7	Use ratios to convert within measurement systems (customary and metric) to solve authentic problems that exist in everyday life.	Strategies and Methods - Students should be able to use flexible, strategic thinking to manipulate and transform units appropriately when multiplying or dividing quantities to solve practical, mathematical problems. - Students should be able to convert measurement units when given a conversion factor within one system of measurement and between two systems of measurement (customary and metric) using proportional reasoning developed through working with ratios and rates.		Example - Given 1 in. = 2.54 cm , how many centimeters are in 6 inches?	

Published: 9,2023 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

unit?		
Criterion C: Communication	In this unit, students will gain a deeper understanding of proportional reasoning through instruction and practice. Develop and use multiplicative thinking, a sense of proportional reasoning, and the understanding that ratio is a comparison of two numbers or quantities. As well as find percents using the same processes for solving rates and proportions, and solve real-life problems involving measurement units that need to be converted	Formative Assessment(s): Unit 3 CFA Summative Assessment(s): Unit 3 Summative and Embedded MYP Constructed Response Questions
Approaches to learning (ATL)		
Category: Social Cluster: Collaboration Skills Skill Indicator: Give and receive meaningful Category: Thinking Cluster: Critical Thinking, Cre Skill Indicator: Use models a	Thinking \& Transfer mulations to explore complex systems and issues	

Learning Experiences		
Objective or Content	Learning Experiences	Personalized Learning and Differentiation
6.NR.4.1 Explain the concept of a ratio, represent ratios, and use ratio language to describe a relationship between two quantities. 6.NR.4.2 Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. 6.NR.4.3 Solve problems involving proportions using a variety of student-selected strategies.	Recipe for Ratios In this learning plan, students will explore the concept of a ratio and how to use them in real-world scenarios.	Student groups can be selected based on data. This material can be scaffolded to provide support for students who need it. Students who need more assistance can work with the teacher in a small group. Teachers can provide scaffolded questioning to groups needing more support. Manipulatives can be given to support.
Content Resources		
DOE Unit 1 Savvas - Savvas Topic 5 Intervention Tasks (DOE)		

[^0]
[^0]: Published: 9,2023 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

